Category Archives: soaping terms

Apr
30

Color Dispersion

This entry was posted in bath and body, bath products, cold process soap, cold process soap colorant, cold process soap scents, Fragrance Oils, homemade soap, Natures Garden, soap colorants, Soap making supplies, soap oil properties, soaping terms and tagged , , , , , , , , , , , , , , , , , , , , , on by .

color dispersionColor Dispersion in Soap

This picture shows the same exact recipe using two different methods of color dispersion in soap. Once the soap was poured, we noticed that some of the colorant was still on the sides of the bowls instead of actually incorporated into the soap (as shown in the soap on the right).  In addition, we noticed concentrated pockets of colorant in this cut soap.   Mainly, it is the difference between hand stirring the colorants in verses stick blending the colorants in, and failure to scrape the sides of the bowls to incorporate all of the coloring.  Regardless of the method that you choose, there are distinct advantages and disadvantages. The key to knowing which method works best for you is knowing your soap recipe and the time that it allows you.

Color Dispersion in cold process soap making can be a tricky aspect. After you figure out your color scheme for your recipe and the technique as to how you are adding your color, it then comes down to the actual challenge.

Really there are three options to color dispersion in your soap. They are hand stirring the colorant into the batter with a spoon, stick blending the colorant in, or the combination of both. The correct decision relies on a few factors though. These factors are: your recipe, time, and the number of colorants you want to add.

Hand Stirring
The best advantage of hand stirring colorants into soap is that it does not speed up trace. This allows you the perfect fluid soap batter for accomplishing a multi color swirl in your soap. But, hand stirring the colorant into your soap batter is slightly more time consuming because you really have to stir for some time to get the colorant dispersed. So, this is where knowing your recipe and window of time, especially if you are using multiple colorants, comes into play.

You will also have to be ready to move. When hand stirring, you have to stir, and stir quickly to get the full color dispersion of the soap colorant. And, do not forget to have your spatula ready to clean the sides and rotate the soap from the bottom of the bowl to make sure all of the colorant is evenly dispersed.

However, not all colorants can be hand stirred. Some of the colorants do not disperse as well as others with this method. The examples of these types of colorants would be titanium dioxide and the ultramarines. Colorants like these often need to be stick blended in order to get the full color dispersion among all of the soap.

Stick Blending
Stick blending your colorants in soap batter is ideal for true color dispersion. But, with stick blending time is a major factor. Stick blending will speed up trace (or the saponification process) in your soap. If too much time elapses while stick blending your colorants into the batter; certain swirling techniques cannot be accomplished. This is because the soap batter will be too thick, especially if you are using more than two colors in your soap recipe.

Besides speeding up trace, there is another factor to consider. When using multiple soap colorants and stick blending you will have to quickly clean your stick blender in between colors. But, you do have a few options when it comes to this. Some soapers keep a small bowl of water by their coloring station to quickly clean their stick blender in between colors. And, some just stick blend their colors in the correct order, but gently tap the stick blender to remove as much colored batter as possible before moving on to the next color. For example if you are coloring your soap green and yellow; you would start by stick blending the yellow first. This is because the yellow color is the lightest, and then move to the green.

The Combo
For the situations where you want to use ultramarines which almost require a stick blend to get the best color dispersion, but you still want several other colors in your soap; you can combo the blend. You would start by stick blending the colorants that need it, and then move on to the hand stirred colorants. If the stick blended colorants become too thick, simply stir them by hand and the soap batter will thin out slightly (or enough to pour). Just remember, you must move quickly.

What this really all comes down to is testing. Through making various batches of soap, you will be able to find exactly which method of color dispersion is best for you and your soaping recipe. There really is no right or wrong answer as to which method to use. Each soap recipe will vary.

Natures Garden offers FUN Soap colorants for soap making.  We even carry multiple neon colors to really make your soap “come alive”.

Apr
26

Gel Phase

This entry was posted in all natural, bath and body, bath products, cold process soap, cold process soap colorant, cold process soap scents, essential oil, fragrance and color, Fragrance Oils, homemade soap, Natures Garden, soap fragrances, soap ingredients, Soap making supplies, soap mold, soaping terms and tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , on by .

inhibited gel phase soap In an earlier blog post, we briefly discussed insulation of cold process soap. Through insulating your soap, you are encouraging the best environment for the gel phase to occur during saponification. Keeping the soap evenly heated using insulation will prevent a partial gel from occurring. But, still there are no guarantees. Even with the best insulation, you may still end up with bars of soap that have partial gel evident.

So, what if you prevented the gel phase in your soap?

Although this is possible, it is still not guaranteed. It can be very tough to prevent the gel phase. But, there are some factors that need to be noted to help you in your quest to stop the gel phase. These factors are: the size of your mold, and the various ingredients in your recipe. The saponification process involves heat; it is the nature of the soaping beast. Choosing to eliminate the gel phase will change some elements to your soap and soaping process.

But, before we get to that information, let’s look at some specific reasons to prohibit the gel phase.

First, since you are decreasing the amount of heat that is in your soap, this will allow you to introduce certain soaping ingredients that normally would be finicky. Examples of these heat sensitive ingredients would be: dairy products, heat sensitive colorants; prone to morphing, and fragrances or essential oils with a low flashpoint.

Dairy Products
Soaping with ingredients such as creams, milks, and butters for example will provide your finished bars with rich, extra moisturizing elements. However, soaping with dairy products can be tricky. With the heat that is involved with the saponification process, there is a chance that dairy products will burn. This results in both discoloration and an off smell in your soap. By preventing the gel phase from occurring, you allow these ingredients a fighting chance in soap. And, you can even produce a creamier bar of finished soap.

Colorants
Whether you are deciding to go the natural route with herbs, or using colorants that you worry may morph; preventing gel phase allows the window of opportunity to stay open. Certain herbs discolor or darker from the saponification process. The same is true for some colorants that completely alter like deep purple to brown.

Now, for the colorants in the finished soap when the gel phase is eliminated: the bar colors are bolder and more vivid. Even if you choose not to color your soap batter, the elimination of the gel phase stops the darkening of the fats and oils in your recipe, allowing for a “whiter” finished bar.

Scenting Options
If you do not want to rebatch your soap recipe, preventing the gel phase in your cold process soap may allow you to scent your soap with low flashpoint oils without worrying that the saponification process will eliminate the scent. It is also possible for fragrance or essential oil scents to come through stronger in the soap because of the reduction of heat.

As for what preventing the gel phase means for your soaps, there are key points you should know. First, you must keep your molded soap chilled for the full 24 hours. Depending on your recipe, you may have to keep the soap chilled for an additional 24 hours as well.

Now, when you are ready to unmold your soap, it is crucial to let your molded soap reach room temperature before trying to slice it. Not allowing your soap to be at room temperature before cutting may result with your bars being brittle, and breaking apart as you slice them.

As for the saponification process, since you inhibit the gel phase, it will take your soaps longer to complete the saponification process. What this means is that the soap will need additional cure time before it will be ready to use.

So, whether you choose to insulate or prevent the gel phase, it is really up to personal discretion. Regardless of the method, the result is the same; a finished bar of soap. The only variables that change are the molding environment and the cure time.

Aug
15

Soap Terminology

This entry was posted in how to make cold process soap, Natures Garden, soap oil properties, soap safety, soaping terms and tagged , , , , , on by .

Below is a list of some common terms used when soaping.  Although we tried our hardest to ensure that all important soaping terms are defined, this is by no means a complete soaping dictionary.

Absolute-

Derived from plants through a method of extraction involving solvent, this term refers to the highly aromatic, concentrated oil that is extracted.

Additives-

Ingredients that can be added to processed soap, which are not included in the original recipe which was used to calculate the SAP value for lye purposes.  This additive category would include all ingredients with the exceptions of: lye, water, soaping oils, butters, and fats.  This means that additives would describe the addition of fragrance oil, soap colorant, optiphen, vitamin E, herbs, clays, etc.  Note:  If you have a superfat recipe, any leftover or excess oils, butters, or fats, not saponified by the lye solution would also be considered an additive.

Alkali-

Any compound with a pH higher than 7.  Alkali is also referred to as a base.  Both sodium hydroxide and potassium hydroxide are alkalis (or bases).

Allergen-

An element that can cause an allergic reaction (irritation, redness, swelling, discomfort) in one person, but does not adversely affect another.

Anhydrous-

Not containing any water.

Anti-bacteria-

The ability to fight off bacteria successfully.

Anti-oxidant-

Natural or synthetic elements that have the ability to decrease oxidation, preventing breakdown or spoilage.

Anti-septic-

The ability to fight or decrease an infection topically (on the skin), by restricting the growth of microorganisms.

Aromatherapy-

The use of certain fragrance or essential oils that can reform a person’s mood or actions.

Aromatic-

Being odoriferous, having a strong odor; usually found as a pleasant scent.

Astringent-

An element with the capability to pull together or constrict skin tissues (or pores), concurrently restricting the flow of natural secretion from the skin.

Base-

Also known as an alkali; any substance with a pH level higher than 7.  Both sodium hydroxide and potassium hydroxide are bases (or alkalis).

Botanical-

Directly from or related to plant or plant life.

Carrier Oil-

A substance that is used to dilute a fragrance or essential oil so that it is safe for use on the body.  Carrier oils can also refer to an oil that is used to carry the fragrance out in a product like roll on perfume.  Oils used in this way typically do not have a very strong scent, ie: sweet almond oil.

Castile Soap-

Originally denoting an olive oil soap bar; which was named for the region in Spain where it originated.  This term now is commonly given to any soap containing 100% olive oil (no other soaping oil used in the recipe).

Caustic-  

Usually a term to describe a very strong acid or base, this refers to a substance that by means of a chemical reaction will breakdown or destroy other elements under certain conditions.  Caustic material is very dangerous especially to elements containing water such as organic tissue.  An example of a caustic ingredient is sodium hydroxide (lye).

Cold Process Soap Making-

The term cold process is actually attributed to the fact that there is no outside heating source required for saponification; the lye mixture itself heats and saponifies the oils.  This process, abbreviated as CP, involves diluting lye into distilled water to form a lye solution.  This lye solution is then added to melted oils/fats/butters and stirred.  After trace is present, other additives such as fragrance and herbs may be added.  Batter is then poured into molds.  Insulation of molds is required.  Within 24 hours, the soap is solid enough to be removed from the mold and cut, exposing more soap area to oxidation.  For a time period of 4-6 weeks, the soap must complete the saponification process.  During this time, any excess lye and water is evaporated out, creating a milder and harder bar of soap.  Note:  Using a CP bar of soap that still has active lye will irritate and burn the skin.  A pH strip test is the best way to test if your soaps are safe to use.

Cold Process Oven Process Soap Making-

This soaping process; usually referred to as CPOP, involves diluting lye into distilled water to form a lye solution.  This lye solution is then added to melted oils/fats/butters and stirred.  After trace is present, other additives such as fragrance and herbs may be added.  Batter is then poured into molds.  The molds are then placed into a 170 degree oven for 1- 2 1/2 hr.  Within 24 hours, the soap is solid enough to be removed from the mold and cut, exposing more soap area to oxidation.  To ensure milder and harder bars of soap, the soap is then cured for 2-4 weeks.  Note:  Using a CP bar of soap that still has active lye will irritate and burn the skin.  A pH strip test is the best way to test if your soaps are safe to use.

Cosmetic Grade-

Available in different grades which are priced accordingly, this refers to ingredients that are safe for use on the body or in cosmetics.

Cure-

The time period that it takes to saponify soap so that there is no longer any active lye present.

D&C-

D & C is the abbreviation for drug and cosmetics.  If something is approved as D&C safe, then it can be used for cosmetics or in drugs.

Deodorize-

This term refers to the removal of a scent from something.  Within soaping reference, many soaping oils are deodorized to take away their natural scent.  Using deodorized soaping oils is one way to keep your fragrance true to their original aroma.

Detergent-

This agent has cleansing benefits and performs very similar to soap.  However, detergent is made from chemical compounds other than the fats/oil/butters and lye (like soap).  When a detergent is found in the ingredients list of a product, it must be labeled as a cosmetic product under the specific guidelines of the FDA.

Dreaded Orange Spots-

These spots occur in processed soaps that contain are large amount of soaping oils that have turned rancid.  These spots are orangish, brownish, beigeish in color.  It is believed that they are  caused by using soaping oils which are old.

Embeds-

Embeds refer to pieces of soap that are placed into the processing soap during the light trace stage.

Emollient-

Refers to having certain properties that are both soothing and softening to the skin.

Emulsifying Wax-

This is an emulsifier (a product that allows water based ingredients and oil based ingredients to bind together) used in hair and skin care. Emulsifying wax is used in skincare recipes to allow for thick creams.

Emulsion-

This is when two liquids which normally would not blend together, are blended together (oil/water).  Typically, the process involves an emulsifier (a product that allows water based ingredients and oil based ingredients to bind together).

Essential Oil-

Natural volatile oils that are extracted through various means from plant matter.  Extraction could take place by means of:  Distillation, expression, or the use of chemical solvents.

Exfoliate-

An additive that is added to processed soap that allows for the removal of dirt and debris from the skin, as well as, the removal of dead skin cells themselves, for healthier skin.

Exothermic- 

A term referring to the heat that is produced and released when a chemical reaction occurs. Examples of an exothermic reaction would be when lye is added to water or when the lye solution is added to the oils and butters.

Extract-

For essential oils, this is when the oil can be extracted from the plant without the use of any chemical solvents.  This is the most pure, concentrated form of an essential oil.

F,D&C-

F,D&C is the short abbreviation for Food, Drug, and Cosmetics.  If something is F,D&C approved, that means that it is a safe ingredient for use in food, drug, and cosmetics.

Fatty Acids-

Fatty acids are compounds either saturated or unsaturated, that are found in all fats and butters.  The fatty acids are what is responsible for giving your soap bars conditioning, creamy lather, bubbles, hardness, and cleansing ability.

Fixed Oils-

These are oils such as olive, palm, and coconut, that can be heated without evaporating.

Flash Point-

The possible lowest temperature that will inflame the vapors of a liquid when introduced to a source of ignition.  Flashpoints are available for every fragrance and essential oil that Natures Garden carries.  They are located in three places, on the website under the fragrance information,  on the specific MSDS sheets, as well as on the fragrance labels themselves.  Fixed oils also have a flashpoint.

Fragrance Oil-  

The blended combination of essential oils, synthetic aroma chemicals, and resins to produce a liquid that is extremely aromatic. Certain scents can only be derived synthetically such as Strawberry, Coconut, Banana, Mango (to name just a few) because these particular aromas cannot be made into essential oil form.

Gel Phase-

A possible phase of saponification, since not all soap batches will do this; occurring in the beginning of the process, this refers to the short period of time when the soap batter transforms to a warm clear gel.  This gel will then slowly return to being opaque, but it will also be a little bit more solid and cooler.

Glycerin-

A natural emollient and humectant, glycerin is a product of processed soap.  It is also often removed from commercial brands soaps and used to created creams and lotions.

Hot Process Soap Making-

This soaping process, generally referred to as HP, has steps very similar to the CP soap steps, but varies in that you are adding heat to the equation to speed up the saponification process. The heat sources are usually a crock pot or stovetop.  The HP process includes: making your lye water mixture, adding your oils to the heat source, blending the lye water and oils together, stir, cook, stir, stir, stir, add fragrance/ additives, stir some more. With this process, it is not until the soap batter is closer to a solid than a liquid that it is scooped and packed into a mold. Since the saponification process has already completed from the heat, there is no need to insulate your mold.  Although a cure time for these soaps is not required, to get a milder and harder bar of soap, a cure time of 1 week is advised.  The final soap bars will have a very rustic appeal.

Humectant-

An ingredient that not only attracts water from the environment, but also aids the skin in absorbing the water as well.

Hydrating-

Something that provides moisture or water to the skin.

Hydrogenated Oil-

An oil that has the addition of hydrogen added to it to make it a solid or semi solid at room temperature.  The process of hydrogenation helps to decrease the chance of oils turning rancid.

INCI Name-

Mandatory for labeling in the US and Canada, the INCI names were created to ensure that all ingredients would be listed the same on various cosmetic products.  This also allows for ease on consumers when comparing ingredient lists on cosmetics.  INCI stands for International Nomenclature Cosmetic Ingredient.

Infusion-

Taking an additive such as a herb, and allowing it to steep in a liquid to extract the herb’s beneficial aspects.

Insoluble-

This means not able to be dissolved.  Oils/Butters/Fats will not dissolve in water.

Irritant-

Much like an allergen, irritants cause disturbing and painful reactions to skin.

Lye-   

Essential to the saponification process, lye is a caustic base.  Lye can also be referred to as either sodium hydroxide (used to make bar soaps) or potassium hydroxide (used to make liquid soaps).

Lye Discount-

The method of purposely decreasing the amount of lye that should be included in a soaping recipe.

Melt and Pour Soap Making-

This soaping process, usually referred to as M&P, involves using soap that has already gone through the saponification process.  The pre-fabricated soap base only needs a few steps before use.  First, the slabs are cut and melted down into a liquid form in order to add any fragrance, color, or additives.  Once this is complete, the liquid must be poured into a mold where it will harden.  The soap is finished and can be used once it has hardened and is popped out of the mold.  Since this process does not include the use of lye, no cure time is needed.

Melting Point-

The temperature at which a soaping oil will turn from a solid to a liquid, or starts melting.

MSDS-

The abbreviation of Material Safety Data Sheet.  These sheets contain all of the relevant information of a specific material.

Natural-

Anything that is of the earth, not containing any manmade or synthetic additions to its makeup.

Nutrient-

Within the realm of soap making, this refers to anything that is beneficial or has favorable advantages for the skin.

Organic-

Without the additions of anything man made or chemically altered, this term denotes anything that was once living.

pH scale-

A form of measurement for the acidity or alkalinity of a substance in ratio to water.  Ranging from 0-14, the lower the number, the more acid it is.  The higher the number, the more alkaline.  A pH of 7 will denote neutral (water has the pH of 7).  Processed soap will have a pH of 8.5-10.5 when cured completely.

pH strip-

Litmus paper containing water soluble dyes that when dipped into a liquid or set on a bar of soap will show a color.  The color is then compared to a chart to find the pH level.

Photosensitizers-

A substance that once used on the skin will make the skin super sensitive to the sun or to sunlight;  increasing the chance of a sunburn in some people.

Preservative-

An ingredient that is added to a substance that will prevent the breakdown and spoilage from microbial growth.

Potassium Hydroxide-

Symbolized as KOH, this is used for lye solution of gel or liquid soaps.  Also known as caustic potash.  This ingredient is a very strong base with a pH of 14.  Note:  The SAP values of your recipes fats/butters/oils will vary depending on whether you are using sodium hydroxide (NaOH) or potassium hydroxide (KOH).

Rancidity-

The breakdown or spoilage of oils/butters/fats used in soaping.  Often, there is a stale or off smell due to the decomposition of the oil/butter/fat.

Rebatch-

Considered a do- over in the soap making process, this process involves the use of soap that was already crafted through CP or HP.  The processed bars are grated down and melted with a heat source, usually a crock pot, but other sources are used as well.  A liquid, like water or milk, is added to help prevent scorching of the soap shavings.  If a rebatch is being done due to an error, the correcting elements are added too.  The rebatch heats for 1 hour.  Once it is in a thick liquid form, any additives such as color, fragrance, or herbs, are added.  The thick batter is scooped out and molded.  Once cooled completely, the soap is removed, cut, and cured as usual.  Rebatching is generally done for two main reasons.  The first is to correct a soaping error or seize.  The second is for the addition of additives that may not survive or react badly during the saponification with active lye.  An example of these temperamental additives would be natural exfoliates.

Refined oils-

These are oils that have been filtered, removing any impurities in the oils.

Safety Equipment-

A category for all of the equipment used to keep one safe during the soaping process.  This equipment includes but is not limited to:  Safety goggles and/or face shield, rubber gloves,  a face mask, aprons, etc.  This category would also include items like protective coverings for work areas, fire extinguishers, bottles of neutralizing substances (such as vinegar for lye spills), first aid kit, etc.

Saponification-  

This is the process of the chemical reaction that the lye solution and oils/fats/butters go through when making soap.  Saponification produces both soap and glycerin.  Glycerin naturally occurs as a byproduct of this chemical reaction.

SAP Value-

The abbreviation for Saponification Value.  This refers to the number of milligrams of lye that is needed to completely saponify one gram of a specific oil/fat/butter in a soap recipe.  Note:  The SAP values of your recipes fats/butters/oils will vary depending on whether you are using sodium hydroxide (NaOH) or potassium hydroxide (KOH).

Seize-

A term referencing the condition of the soap batter when saponification has occurred enough that the batter is no longer a liquid, and has started to solidify.  This occurs while mixing together the ingredients of a soap recipe when the batter becomes too thick to mix easily or pour into a mold.

Soap Measurements-

Soap Measurements are measured in weight, not volume.

Soda Ash-

Sometimes forming on processed soaps, this powdery substance has no direct negative effect on soap bars.  Soda ash can be cut or wiped off bars.  Insulating soaps while in the mold will help prevent soda ash.  Soap that has soda ash can be sprayed with rubbing alcohol to improve the appearance of your soap.

Sodium Hydroxide-

Symbolized as NaOH, this is used for lye solution of solid bar of soap.  Also known as caustic soda.  This ingredient is a very strong base with a pH of 14.  This is the component that is interchanged with KOH (Potassium hydroxide) for saponifying gel or liquid soap recipes.  Note:  The SAP values of your recipes fats/butters/oils will vary depending on whether you are using sodium hydroxide (NaOH) or potassium hydroxide (KOH).

Soluable-

A substance that can be dissolved in a liquid.

Superfat-

This term involves purposely adding an excess of soaping oils or fats to your batter that are not included in your calculated recipe for lye saponification.  This is done to intentionally make your soap bars richer in soaping categories such as creaminess, moisturizing, bubbles, etc.

Surfactant-

A substance that reduces the surface tension of a liquid when it is dissolved.  In soap, surfactants allow for the dirt and impurities to be rinsed off of the skin.

Synthetic-

Something that is created chemically.  Not natural.

Tallow-

Rendered from animals, this is the hard fatty substance used for soap making.

Trace-

This term references the stage in the soaping process where the batter begins to thicken because of the saponification process. You will know if your soap batter is at trace by drawing up some of the batter with your spoon to see if it leaves any trails on top.  If the lines in the batter disappear, the batter is not in full trace.  If the lines stay visible on the surface, then your batter has traced.

Vegan-

Products that are produced without the use of any animal ingredients or animal parts.  If a product contains tallow/lard/beeswax, it cannot be vegan.

Volcano Effect-

This term describes when water is added to lye, WHICH SHOULD NEVER BE DONE!  The top layer of the lye starts to dissolve from the chemical reaction with the water.  Immediately, the water starts dissolving and releasing heat.  The heat causes a hard crust to form, and the water starts evaporating.  The lye that is below the crust remains dry, and untouched by the water.  As more water is added, pressure starts to build from the dissolving and heat release.  The crust ruptures from this pressure and force, causing the dry lye, partially dissolved lye, steam, and boiling water to spew out the top resembling and active volcano eruption.  ALWAYS ADD LYE TO WATER!

Volatile-

Oils that will evaporate quickly under normal temperatures.

Water Discount-

The method of purposely decreasing the amount of water that should be included in a soaping recipe.  Doing so will accelerate trace and the saponification process.  Not recommended for newbie soapers.

Soaping Abbreviations:

-KOH: Potassium hydroxide

-NaOH: Sodium hydroxide

-H20: water

-TD: Titanium Dioxide

-DHHP: Direct Heat Hot Process

-HP: Hot Process

-CP: Cold Process

-MP: Melt & Pour

-B&B: bath and body

-SB: Stick Blender (or shea butter)

-FO: Fragrance Oil

-EO: Essential Oil

-ISO : In Search Of (or in reference to isopropyl alcohol)

-SS : Skin Safe

-OOB: out of the bottle

-CPHP: Crock Pot Hot Process

-CPOP: Cold Process Oven Process

-DWCP, DW: Discounted Water Cold Process

-OHP: Oven Hot process

-DBHP : double boiler hot process

-DHHP : direct heat hot process

-MWHP : microwave hot process

-RT: Room temp

-AVG:  Aloe Vera Gel

-SAP:  Saponification values

-DOS:  Dreaded Orange Spots

-AO:   Animal Oil

-PKO: Palm Kernal Oil

-OMH: Oatmeal Milk & Honey

-OM: Oatmeal

-GM: Goats’ Milk

-CM: Coconut Milk

-PKF: palm kernel flakes

-EVOO: Extra virgin olive oil

-OO: olive oil

-SAO: Sweet Almond Oil